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Density and Surface Tension of Liquid Ternary
Ni–Cu–Fe Alloys1

J. Brillo,2,3 I. Egry,2 and T. Matsushita4

The density and surface tension of liquid Ni–Cu–Fe alloys have been
measured over a wide temperature range, including the undercooled regime.
A non-contact technique was used, consisting of an electromagnetic levitator
equipped with facilities for optical densitometry and oscillating drop tensi-
ometry. At temperatures above and below the liquidus point, the density
and surface tension are linear functions of temperature. The concentration
dependence of the density is significantly influenced by a third-order (ternary)
parameter in the excess volume. The surface tensions are rather insensitive
to substitution of the two transition metals Ni, Fe against each other and
depend only on the copper concentration. By numerically solving the Butler
equation, the surface tension of the ternary system can be derived from the
thermodynamic potentials EG of the binary phases (Ni–Cu, Fe–Cu, Ni–Fe)
alone.

KEY WORDS: density; electromagnetic levitation; excess volume; liquid
metals; nickel-copper-iron alloys; surface tension.

1. INTRODUCTION

1.1. Nickel–Copper–Iron

In recent years, the Ni–Cu–Fe ternary system received some attention
for its electrical and magnetic properties [1,2]. The combination of its
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low thermal expansion and its relatively high electrical and thermal
conductivity makes Ni–Cu–Fe also an interesting candidate for the
development of new data storage facilities [3].

From a physical point of view, Ni–Cu–Fe is characterized by attrac-
tive interactions between the two transition metals Ni and Fe on the one
hand, and repulsive interactions between Cu and Fe on the other. As a
consequence for the liquid state, the metastable miscibility gap of the Cu–
Fe binary phase closes gradually as nickel is added to the system [4].

The aim of the investigation presented here is to study the density
and surface tension of the Ni, Cu, and Fe system in the liquid phase.
Up to now, there is only a limited number of experimental data available
for this system. Recently, we performed density and surface tension mea-
surement for the binary alloys, Ni–Fe, Ni–Cu, and Cu–Fe [5–7]. Here, we
report on systematic measurements on the ternary system. The method
used in this work is based on the containerless technique of electromag-
netic levitation, which is described in Ref. 8.

1.2. Density and Molar Volume

The density, ρ(T ), of a liquid metal can be considered as a linear
function of temperature, T , within a limited temperature interval includ-
ing the melting point [5]:

ρ(T ) = ρL +ρT (T −TL) (1)

In this equation, ρLis the density at the liquidus temperature, TL,
and ρT is the temperature coefficient. Although the density is the physical
property of primary interest for applications, physically it is more suitable
to discuss the molar volume, V , due to its extensive nature. The molar vol-
ume V is calculated from the density as mρ−1, where m is the mass of one
mole of substance.

For a regular ternary solution with components i, each having the
bulk concentration cB

i , V is usually written as a function of temperature
and concentrations [9]:

V (cB
1 , . . . , cB

3 , T )=
∑

cB
i Vi(T )+EV (cB

1 , . . . , cB
3 , T ) (2)

In this equation, Vi is the molar volume of component i, and EV is the
excess volume. In the case of a vanishing excess volume EV , Eq. (2) reduces
to a simple linear combination of molar volumes Vi , which is often referred to
as Vegard’s law [10]. In order to describe the functional dependence of EV on
concentration and temperature, the following form is used [9]:
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EV (cB
1 , . . . , cB

3 , T )=
2∑

i

3∑

j>i

cB
i cB

j
EVi,j + cB

1 cB
2 cB

3
EV T (3)

In Eq. (3), EVi,j denotes the binary interaction parameter between
components i and j and EV Tis the parameter for the ternary interaction.

1.3. Surface Tension

For a liquid ternary alloy, consisting of three elements i = 1, 2, 3, with
corresponding surface tensions, γi(T ), the surface tension γ123(T ) of the
alloy is predicted by the Butler equation [11,12]:

γ123(T ) = γ1 + RT

S1
ln

(
1− cS

2 − cS
3

1− cB
2 − cB

3

)

+ 1
S1

{
EGS

1(T , cS
2 , cS

3)− EGB
1 (T , cB

2 , cB
3 )
}

= γ2 + RT

S2
ln

(
cS

2

cB
2

)
+ 1

S2

{
EGS

2(T , cS
2 , cS

3)− EGB
2 (T , cB

2 , cB
3 )
}

= γ3 + RT

S3
ln

(
cS

3

cB
3

)
+ 1

S3

{
EGS

3(T , cS
2 , cS

3)− EGB
3 (T , cB

2 , cB
3 )
}

(4)

where R is the universal gas constant, T is the temperature, Si is the surface
area in a monolayer of pure liquid i, cB

i is the mole fraction of component i

in the bulk phase, and cS
i is the mole fraction of component i in the surface

phase. EGB
i denotes the partial excess Gibbs free energy in the bulk and EGS

i

the partial excess Gibbs free energy of component i in the surface layer.
The Butler equation is based on the assumption that the surface is a

monoatomic layer and can be treated as a separate thermodynamic phase.
With respect to the bulk, atoms on the surface have a reduced coordina-
tion number which lowers |EGS

i |. It was shown by Tanaka and Iida [11]
that, apart from a constant factor 3/4, EGS

i could be assumed to have the
same functional form as EGB

i :

EGS
i ≈ 3

4
E
GB

i (5)

Here i is either component 1, 2, or 3. The surface area Si(i = 1, 2, 3)
is calculated from the molar volume Vi as follows [6,11]: Si = 1.091 (6.02 ×
1023)1/3V

2/3
i . The partial excess Gibbs free energy EGB

i is derived from the
excess Gibbs free energy EG according to the usual thermodynamic rela-
tions [9].
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Equations (4) and (5) imply a rule for the calculation of the sur-
face tension from the pure elements: if EG is given, Eq. (4) can be solved
numerically using the surface concentrations as unknown variables. For
EG(T , cB

i ) an ansatz similar to Eq. (3) is used [9]:

EG(cB
1 , . . . , cB

3 , T )=
2∑

i

3∑

j>i

cB
i cB

j
EGi,j (6)

In Eq. (6), EGi,j denotes the binary interaction parameters for compo-
nents i and j . This equation is a model function for the excess free
energy of a sub regular solution. The effect of any existing ternary term,
c1c2c

E
3 GT, was neglected so that the Gibbs free energy of the sub regular

ternary solution is determined by the energies of the binary phases only
[13,14].

The parameters EGi,j can be written as a function of temperature
and concentration according to the Redlich–Kister form [9,13]:

EGi,j =
∑

ν=0

νLi,j (c
B
i − cB

j )ν (7)

In Eq. (7), the parameters νLi,j depend on temperature but not on
the concentrations.

2. EXPERIMENTAL

2.1. Levitation

All experiments presented in this work were carried out in an elec-
tromagnetic levitation chamber that is described in detail in Refs. 5–8. A
schematic sketch of the arrangement is shown in Fig. 1. The sample is
processed under a protecting atmosphere of He/8vol%–H2 in a levitation
coil to which a current of 100 Å and approximately 250 kHz is applied. It
is positioned by forces due to interactions with the inhomogeneous mag-
netic field and melted by eddy currents that are induced within. Temper-
ature control is achieved by cooling the sample in a laminar flow of the
He/H2 gas mixture. The temperature, T , is measured using an infrared
pyrometer aimed at the top of the sample. For each sample, it is necessary
to recalibrate the temperature with respect to the liquidus temperature, TL.
Values for TL were obtained from calculations [14] based on the Calphad
approach [15]. If TPis the output signal from the pyrometer, then the real
temperature T is obtained using the following approximation derived from
Wien’s law:
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Fig. 1. Schematic diagram of the experimental arrangement.

1
T

− 1
TP

= 1
TL

− 1
TL,P

(8)

In Eq. (8), TL,P is the pyrometer signal at the liquidus temperature.
Equation (8) is valid only if the sample emissivity at the operating wave-
length of the pyrometer ελ(T ) remains constant over the experimentally
scanned range of temperature. This is a good approximation for most
metals [16].

The uncertainty of the experimentally determined temperatures is gen-
erally estimated to be no larger than ±20 K. The accuracy of the Calp-
had calculation strongly depends on the quality of modeling and the input
parameters used. For good modeling the error should be less than the typ-
ical experimental error [14]. In order to verify this, we performed a spot
check measurement using a thermocouple on a Ni25Cu40Fe35 sample. The
obtained difference for the calculated liquidus temperature was only 6 K
for this sample.

2.2. Density and Volume

To measure the density based on the volume of the sample, shad-
owgraphs are taken from the levitated sample. As schematically shown in
Fig. 1, a polarized HeNe laser beam, equipped with a spatial filter and a
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beam expander, is used to illuminate the sample from behind. The shadow
image is captured by means of a digital CCD camera and analyzed by an
edge detection algorithm that locates the edge curve R(ϕ) where R and
ϕ are the radius and azimuthal angle with respect to the drop center. In
order to eliminate the influence of oscillations, the edge curve is averaged
over 1000 frames. It is then fitted by Legendre polynomials of order�6;

〈R(ϕ)〉=
6∑

i=0

aiPi(cos(ϕ)) (9)

with Pi being the i-th Legendre polynomial. As shown by an analysis of
top view images [7], the equilibrium shape of the sample is symmetric with
respect to the vertical axis. Hence, its volume is calculated using the fol-
lowing integral:

VP = 2
3π

π∫

0

<R(ϕ)>3 sin(ϕ)dϕ (10)

Vp is the volume in pixel units. It is related to the real volume V according
to V = qVP, with q being the scaling factor. The scaling factor q of the
system is determined by a calibration procedure described in Ref. 7. When
M is the mass of the sample, the density, ρ, is calculated from ρ = M/V .
The uncertainty �V /V ≈ �ρ/ρ is estimated to be ±1.5%

2.3. Surface Tension

Surface tension measurements were performed using the oscillating
drop technique [8]. A fast recording C-MOS video camera (400 frames/s,
1024 × 1000 pixels) is directed at the sample from the top. A series of 4196
frames is recorded at each temperature and is analyzed afterwards by an
edge detection algorithm. The frequency spectrum of the radius R exhib-
its a set of five peaks ωm , m = −2, −1, 0, 1, 2, which correspond to the
surface Rayleigh-oscillation modes. The surface tension is calculated from
these frequencies following the sum rule of Cummings and Blackburn [17];

γ = 3M

160π

∑+2

m=−2
ω2

m −1.9
2 −0.3
(g

a

)2

−2 (11)

where M is the mass of the sample, g is the acceleration of gravity, and
a is the radius of the sample. 
 is calculated from the three translational
frequencies ωX, ωY, and ωZ of the samples, i. e.,
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2 = 1
3

(
ω2

X +ω2
Y +ω2

Z

)
(12)

This method is attached with an uncertainty of �γ/γ ≈ 5%. A more
detailed description of this procedure is given, for instance, in Ref. 18.

2.4. Sample Composition

Two sections through the ternary system, designated in Fig. 2 as
“A” and “B”, were investigated. Samples along section A have concen-
trations according to Ni0.4(1−x)CuxFe0.6(1−x). This section was chosen,
because, along this cut, the binary contributions to the excess volume can-
cel each other as can be calculated by Eq. (3) using parameters from
Table I. Along section A, the excess volume is due entirely to the ternary
term.

In Section B, the copper concentration is kept constant at 20 at%
and the main parameter is the concentration of nickel, which ranges from
0 to 80 at%. Section B is orthogonal to section A and is described by

Fig. 2. Concentrations of the investigated samples.
Along section A, the concentration of copper is the
main parameter and the ratio of cB

Ni:c
B
Fe is approximately

40:60. Along section B, the concentration of copper is
kept constant at 20 at% and the main parameter is cB

Ni
which ranges from 0 to 80 at%.
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Table I. Parameters EVi,j for the Fe–Ni, Cu–Ni,
and Cu–Fe Binary Systems from Ref. 5

System i, j EVi,j (cm3·mol−1)

Fe, Ni 0
Cu, Ni −0.85
Cu, Fe +0.6

NixCu0.2Fe0.8−x . The individual compositions of the investigated samples
are shown as dots in Fig. 2.

3. RESULTS AND DISCUSSION

3.1. Density and Volume

Measured density values are shown in Fig. 3 for samples along sec-
tion B. It is found that at temperatures, T , above and below the corre-
sponding liquidus point, the density, ρ(T ), as a function of temperature
can be described by a linear relation according to Eq. (1).

From these data the molar volume, V , was calculated. Its concentration
dependence was studied at T = 1773 K, and the result is depicted in Fig. 4

Fig. 3. Density of liquid Ni–Cu–Fe samples from section B
versus temperature.
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Fig. 4. Molar volume, V, of Ni–Cu–Fe samples from section A at
1773 K. The data are shown in comparison to experimental data
for Cu–Fe, Ni–Cu [5] and the corresponding solutions of Eq. (3)
assuming EV T= 0 (dashed line). The solid line corresponds to a fit
of Eq. (3) with EV T = 11.5 cm3·mol−1. The concentrations of the
sample with cB

Cu ≈70 at% lie in Fig. 2 a little off the straight line.
Its volume is therefore slightly larger than expected from Eq. (3).

for section A and in Fig. 5 for section B. Starting in Fig. 4 with Ni40Fe60, the
molar volume increases nearly linearly from a value of 7.7 cm3 up to 8.4–
8.5 cm3, as the copper concentration is altered to approximately 40 at%.
On further increase of the copper concentration, the molar volume remains
almost constant until the value of pure copper, i.e., 7.4 cm3, is reached. In
Fig. 4, the data are shown in comparison with the molar volumes obtained
for the binary systems, Cu–Fe and Cu–Ni [5]. It is noticeable that, along
section A, the values of the ternary alloy seem to follow those of Cu–Fe
rather than those of Cu–Ni. This seems to indicate that, upon adding nickel
to Cu–Fe, the volume is maintained as long as the nickel concentration is
not too large. This hypothesis is supported by the data of section B shown
in Fig. 5. As long as cB

Ni is smaller than 50 at%, the molar volume remains at
a high level of 8.0–8.2 cm3 which can be seen as constant with respect to the
experimental error of �V /V > 1%. This is also indicated by the horizontal
dotted line in Fig. 5. For comparison, the data of the Fe-Ni binary system
are also shown.

In order to perform a quantitative analysis, V is calculated with
parameters EVi,j from Table I using Eq. (3) with EV T = 0. The result is
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Fig. 5. Molar volumes of Ni–Cu–Fe samples from section B at
1773 K. The data are shown in comparison to the corresponding
solutions of Eq. (3) assuming EV T= 0 (dashed line). The solid
line is a fit of Eq. (3) with EV T = 11.5 cm3·mol−1.

shown in Figs. 4 and 5 as well. The experimental values are significantly
larger indicating a positive excess volume. As mentioned above, the binary
contributions to the excess volume vanish along section A, and a fit of Eq.
(3) to the data can only be obtained with EV T �= 0. The data of either sec-
tion can therefore be described by Eq. (3) only, if in addition to the binary
contributions, EVi,j , a ternary interaction parameter EV T > 0 is taken into
account. A least-squares fit of Eq. (3) has been performed to all data
points (Sections A and B) using EV T as the only fit parameter. The value
of EV T obtained this way is

EV T = 11.5 ± 1.5 cm3 · mol−1 (13)

As displayed in Figs. 4 and 5, the result is in good agreement with the
experimental data. As shown, EV T is significantly higher than the inter-
action parameters EVi,j for the binary systems. A direct numerical com-
parison of the interaction parameters EVi,j and EV T is difficult because
these are multiplied by a different order in the concentration products cicj

and c1c2c3, respectively. The maximum contribution of the ternary param-
eter EV T to the excess volume in Eq. (3) is EV T/27 = 0.43 cm3. mol−1.
This value is nearly twice as much as the maximum amount of the excess
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volume in Cu–Ni and nearly three times larger than the maximum excess
volume in Cu–Fe.

3.2. Surface Tension

As in the case of the density, it was found that for the surface tension
it could be described by a linear function of temperature, T :

γ (T )=γL +γT(T −TL) (14)

In this equation, γLis the surface tension at the liquidus temperature,
TL, and γT is the thermal coefficient of the surface tension ∂γ /∂T . From
the data, γ was calculated by linear interpolation at T = 1800 K for each
concentration cB

Cu in section A. The results are shown in Fig. 6.
Starting with Ni40Fe60 the surface tension decreases from 1.88–

1.5 N·m−1,as the copper concentration is increased to 13 at%. For higher
copper concentrations the surface tension remains almost constant at 1.2–
1.3 N·m,−1which corresponds approximately to the value of pure copper. The
experimental data are in good agreement with the solution of the Butler equa-
tion, Eq. (4), using the Redlich–Kister parameters from Ref. 13, as listed in
Table II. The solution of the Butler equation is shown in Fig. 6 as well.

Fig. 6. Surface tension of Ni–Cu–Fe samples from section A at
T = 1800 K versus copper concentration. The experimental data
are shown in comparison to the solution of Eq. (4). The inset
shows a plot of the surface concentration, cS

Cu, for the ternary
system in comparison to the binary phases Ni–Cu and Cu–Fe.
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Table II. Interaction Parameters Used to
Calculate the Excess Gibbs Free Energy EG

According to Eq. (6) and (7). Parameters are
Taken from Ref. 13

Parameter Value (J·mol−1)

0LFe,Ni −18380 + 6.04T
1LFe,Ni 9228 − 3.55T
0LCu,Ni 11760 + 1.084T
1LCu,Ni −1672
0LCu,Fe 36087.98 − 2.33T
1LCu,Fe 324.53 − 0.033T
2LCu,Fe 10355.39 − 3.603T

For samples of section B, the surface tensions have also been
calculated for T = 1800 K. The results are shown in Fig. 7 where surface
tension data are plotted versus nickel concentration, cB

Ni. The values of
the surface tension are all in a range between 1.3 and 1.45 N·m−1. The
observed increase of γ with cB

Ni is so small that it is justified to consider γ

as constant in section B. Similar to the discussion of section A in Fig. 6,
Fig. 7 shows the experimental data in comparison with the solution of the

Fig. 7. Surface tension of Ni–Cu–Fe samples from section B at
T = 1800 K versus nickel concentration. The experimental data
are shown in comparison to the solution of Eq. (4).
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Butler equation, Eq. (4), using parameters for a non-vanishing EG, taken
from Ref. 13. Again, the agreement is good.

The general characteristic features of the surface segregation profiles
(inset in Fig. 6) are roughly the same as for the corresponding plots for the
Cu–Ni and Cu–Fe binary systems. Consequently, the surface tensions of Ni–
Cu–Fe alloys should be rather insensitive to the substitution of the two transi-
tion metals Ni and Fe by each other and should depend mainly on the copper
concentration. This has been confirmed by our data in Figs. 6 and 7.

4. CONCLUSIONS

The density and surface tension of liquid, undercooled Ni–Cu–Fe
have been investigated systematically. For the ternary alloy, the density
values cannot be derived from the properties of the binary phases alone
and a large positive excess volume exists. This is different for the surface
tension data, which agree well with values predicted from the Butler equa-
tion. In contrast to the density, the surface tension can be derived from
the binary phases without further knowledge about the ternary system.
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